Different from other deep scalable architecture-based NAS approaches, Broad Neural Architecture Search (BNAS) proposes a broad scalable architecture which consists of convolution and enhancement blocks, dubbed Broad Convolutional Neural Network (BCNN), as the search space for amazing efficiency improvement. BCNN reuses the topologies of cells in the convolution block so that BNAS can employ few cells for efficient search. Moreover, multi-scale feature fusion and knowledge embedding are proposed to improve the performance of BCNN with shallow topology. However, BNAS suffers some drawbacks: 1) insufficient representation diversity for feature fusion and enhancement and 2) time consumption of knowledge embedding design by human experts. This paper proposes Stacked BNAS, whose search space is a developed broad scalable architecture named Stacked BCNN, with better performance than BNAS. On the one hand, Stacked BCNN treats mini BCNN as a basic block to preserve comprehensive representation and deliver powerful feature extraction ability. For multi-scale feature enhancement, each mini BCNN feeds the outputs of deep and broad cells to the enhancement cell. For multi-scale feature fusion, each mini BCNN feeds the outputs of deep, broad and enhancement cells to the output node. On the other hand, Knowledge Embedding Search (KES) is proposed to learn appropriate knowledge embeddings in a differentiable way. Moreover, the basic unit of KES is an over-parameterized knowledge embedding module that consists of all possible candidate knowledge embeddings. Experimental results show that 1) Stacked BNAS obtains better performance than BNAS-v2 on both CIFAR-10 and ImageNet, 2) the proposed KES algorithm contributes to reducing the parameters of the learned architecture with satisfactory performance, and 3) Stacked BNAS delivers a state-of-the-art efficiency of 0.02 GPU days.


翻译:宽度神经架构搜索(BNAS) 提出一个宽度可扩展架构,由混凝土和增强区块组成,称为宽度革命神经网络(BNNN),作为惊人效率改进的搜索空间。 BNNN 重新使用混凝土区单元格的表层结构,以便BNAS能够为高效搜索使用几个细胞。此外,还提议采用多级特征聚合和知识嵌入,用浅层表层改善 BNNNN 的性能。然而,BNAS 也有一些缺陷:(1) 特性融合和增强的0NA 代表多样性不足,以及(2) 人类专家对知识嵌入的刻度设计进行时间消耗。 本文提议Staced BNAS, 其搜索空间是一个叫做StackNCNNNN,其性能优于BS。 StackNNNC 将小型的功能整合和强大的特征提取能力作为基础部分。对于多级的模型来说,每个小型的BNNNCER将更深层和宽宽度的机基级的输出都显示高层次的功能。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
59+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员