We introduce a new kernelization tool, called {rainbow matching technique}, that is appropriate for the design of polynomial kernels for packing problems. Our technique capitalizes on the powerful combinatorial results of [{Graf, Harris, Haxell, SODA 2021}]. We apply the rainbow matching technique on two (di)graph packing problems, namely the {Triangle-Packing in Tournament} problem (TPT), where we ask for a packing of $k$ directed triangles in a tournament, and the {Induced 2-Path-Packing} (IPP) where we ask for a packing of $k$ induced paths of length two in a graph. The existence of a sub-quadratic kernels for these problems was proven for the first time in [{\sl Fomin, Le, Lokshtanov, Saurabh, Thomass\'e, Zehavi. ACM Trans. Algorithms, 2019}], where they gave a kernel of ${\cal O}(k^{3/2})$ vertices and ${\cal O}(k^{5/3})$ vertices respectively. In the same paper it was questioned whether these bounds can be (optimally) improved to linear ones. Motivated by this question, we apply the rainbow matching technique and prove that TPT admits an (almost linear) kernel of $k^{1+\frac{{\cal O}(1)}{\sqrt{\log{k}}}}$ vertices and that IPP admits a kernel of ${\cal O}(k)$ vertices.
翻译:我们引入了一个新的内脏化工具,叫做 { 树苗匹配技术}, 适合用于包装问题的多边内核设计。 我们的技术利用了[ { Graf, Harris, Haxell, SODA 2021} 的强大组合结果。 我们在两个( di) 包装问题上应用了彩虹匹配技术, 即 { Triangle- Packing in Tournament} 问题( TPT), 我们在比赛中要求包装$( $) 的直立三角形, 和 { 引出 2- 纸- Packing} (IPPP), 我们在这里要求包装 $ ($ 美元) 引出长度为长度的两条路径。 这些问题的次赤道内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 。