The Gaussian Process (GP)-based surrogate model has the inherent capability of capturing the anomaly arising from limited data, lack of data, missing data, and data inconsistencies (noisy/erroneous data) present in the modeling and simulation component of the digital twin framework, specifically for the accident tolerant fuel (ATF) concepts. However, GP will not be very accurate when we have limited high-fidelity (experimental) data. In addition, it is challenging to apply higher dimensional functions (>20-dimensional function) to approximate predictions with the GP. Furthermore, noisy data or data containing erroneous observations and outliers are major challenges for advanced ATF concepts. Also, the governing differential equation is empirical for longer-term ATF candidates, and data availability is an issue. Physics-informed multi-fidelity Kriging (MFK) can be useful for identifying and predicting the required material properties. MFK is particularly useful with low-fidelity physics (approximating physics) and limited high-fidelity data - which is the case for ATF candidates since there is limited data availability. This chapter explores the method and presents its application to experimental thermal conductivity measurement data for ATF. The MFK method showed its significance for a small number of data that could not be modeled by the conventional Kriging method. Mathematical models constructed with this method can be easily connected to later-stage analysis such as uncertainty quantification and sensitivity analysis and are expected to be applied to fundamental research and a wide range of product development fields. The overarching objective of this chapter is to show the capability of MFK surrogates that can be embedded in a digital twin system for ATF.


翻译:以 Gausian 进程为基础的代金模型具有内在能力,能够捕捉数字双框架模型和模拟部分中存在的数据、数据缺乏、数据缺失和数据不一致(noisy/erroneous data)产生的异常现象,特别是对于事故容忍燃料(ATF)概念而言。然而,当我们限制高不全度(实验性)数据时,Gausian 替代模型将不十分准确。此外,运用高维功能( > 20维总体功能)来与GP相近的预测。此外,包含错误观测和异常数据的数据噪音或数据是高级ATF概念概念的主要挑战。此外,对长期ATF候选者来说,管理差异方程式是实验性的,数据可用性方程是一个问题。物理知情性多维度克里金(MFK)模型可用于识别和预测所需物质特性。MFMK 低度物理学(应用20维度总体功能)和有限高度数据数据――对于ATF的基本数据应用者来说,是主要挑战性数据或异常性数据数据,因为这种数据分析是有限的双基数据方法,因此可以展示其常规数据方法。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员