Due to the increasing complexity seen in both workloads and hardware resources in state-of-the-art embedded systems, developing efficient real-time schedulers and the corresponding schedulability tests becomes rather challenging. Although close to optimal schedulability performance can be achieved for supporting simple system models in practice, adding any small complexity element into the problem context such as non-preemption or resource heterogeneity would cause significant pessimism, which may not be eliminated by any existing scheduling technique. In this paper, we present LINTS^RT, a learning-based testbed for intelligent real-time scheduling, which has the potential to handle various complexities seen in practice. The design of LINTS^RT is fundamentally motivated by AlphaGo Zero for playing the board game Go, and specifically addresses several critical challenges due to the real-time scheduling context. We first present a clean design of LINTS^RT for supporting the basic case: scheduling sporadic workloads on a homogeneous multiprocessor, and then demonstrate how to easily extend the framework to handle further complexities such as non-preemption and resource heterogeneity. Both application and OS-level implementation and evaluation demonstrate that LINTS^RT is able to achieve significantly higher runtime schedulability under different settings compared to perhaps the most commonly applied schedulers, global EDF, and RM. To our knowledge, this work is the first attempt to design and implement an extensible learning-based testbed for autonomously making real-time scheduling decisions.


翻译:由于最先进的嵌入系统的工作量和硬件资源日益复杂,因此,开发高效实时调度器和相应的弹性测试变得相当困难。虽然在实践中支持简单系统模型可以实现接近最佳的弹性性能,但在问题背景下,如非预防或资源差异性等任何小的复杂因素都会造成重大的悲观,而现有的任何列表技术可能不会消除这种悲观感。在本文件中,我们介绍了智能实时时间安排的学习测试台LINTS ⁇ RT,这是一个智能实时时间安排的基于学习的测试台,有可能处理实践中所看到的各种复杂情况。LAGo Zero从根本上推动LINTS ⁇ RT的设计,是为了在游戏游戏 Go上玩游戏,并具体应对由于实时列表环境而带来的若干重大挑战。我们首先介绍了LINTS ⁇ RT的清洁设计,以支持基本案例:将零星工作量安排在单一的多处理器上,然后展示如何轻松地扩展框架,以处理非预防和资源差异性实时时间安排等复杂情况,这有可能在实践中处理各种复杂情况。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员