Trusted execution environments (TEEs) such as \intelsgx facilitate the secure execution of an application on untrusted machines. Sadly, such environments suffer from serious limitations and performance overheads in terms of writing back data to the main memory, their interaction with the OS, and the ability to issue I/O instructions. There is thus a plethora of work that focuses on improving the performance of such environments -- this necessitates the need for a standard, widely accepted benchmark suite (something similar to SPEC and PARSEC). To the best of our knowledge, such a suite does not exist. Our suite, SGXGauge, contains a diverse set of workloads such as blockchain codes, secure machine learning algorithms, lightweight web servers, secure key-value stores, etc. We thoroughly characterizes the behavior of the benchmark suite on a native platform and on a platform that uses a library OS-based shimming layer (GrapheneSGX). We observe that the most important metrics of interest are performance counters related to paging, memory, and TLB accesses. There is an abrupt change in performance when the memory footprint starts to exceed the size of the EPC size in Intel SGX, and the library OS does not add a significant overhead (~ +- 10%).


翻译:令人痛心的是,这种环境在将数据写回主记忆、与操作系统的互动以及发布 I/O 指令的能力等方面受到严重限制和性能管理。因此,许多工作都侧重于改善这类环境的性能 -- -- 这就需要有一个标准、广泛接受的基准套件(类似于SPEC和PARSEC)。据我们所知,这样的套件并不存在。我们的套件SGXGauge(SGXGauge)包含一系列不同的工作量,如块链码、安全的机器学习算法、轻型网络服务器、安全的钥匙价值仓库等。我们透彻地描述在本地平台上的基准套件和在使用基于图书馆的OS Shimming 层(GrapheneSGX) 的平台上的行为。我们发现,最重要的衡量标准是:与定位、记忆和TLB访问有关的性能反向。当EX 开始超过 EPC 10 的缩略图时,业绩会突然发生变化。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员