Integrating coded caching (CC) into multi-input multi-output (MIMO) setups significantly enhances the achievable degrees of freedom (DoF). We consider a cache-aided MIMO configuration with a CC gain $t$, where a server with $L$ Tx-antennas communicates with $K$ users, each equipped with $G$ Rx-antennas. Similar to existing works, we also extend a core CC approach, designed initially for multi-input single-output (MISO) scenarios, to the MIMO setup. However, in the proposed MIMO strategy, rather than replicating the transmit scheme from the MISO setup, the number of users $\Omega$ served in each transmission is fine-tuned to maximize DoF. As a result, an optimized DoF of ${\max_{\beta, \Omega }}{\Omega \beta}$ is achieved, where ${\beta \le \mathrm{min}\big(G,L \binom{\Omega-1}{t}}\Big/{1 + (\Omega - t-1)\binom{\Omega-1}{t}}\big)$ is the number of parallel streams decoded by each user. For the considered MIMO-CC setup, we also introduce an effective multicast transmit covariance matrix design for the symmetric rate maximization objective solved iteratively via successive convex approximation (SCA). Finally, numerical simulations verify the enhanced DoF and improved performance of the proposed design.
翻译:暂无翻译