Integrating coded caching (CC) into multi-input multi-output (MIMO) setups significantly enhances the achievable degrees of freedom (DoF). We consider a cache-aided MIMO configuration with a CC gain $t$, where a server with $L$ Tx-antennas communicates with $K$ users, each equipped with $G$ Rx-antennas. Similar to existing works, we also extend a core CC approach, designed initially for multi-input single-output (MISO) scenarios, to the MIMO setup. However, in the proposed MIMO strategy, rather than replicating the transmit scheme from the MISO setup, the number of users $\Omega$ served in each transmission is fine-tuned to maximize DoF. As a result, an optimized DoF of ${\max_{\beta, \Omega }}{\Omega \beta}$ is achieved, where ${\beta \le \mathrm{min}\big(G,L \binom{\Omega-1}{t}}\Big/{1 + (\Omega - t-1)\binom{\Omega-1}{t}}\big)$ is the number of parallel streams decoded by each user. For the considered MIMO-CC setup, we also introduce an effective multicast transmit covariance matrix design for the symmetric rate maximization objective solved iteratively via successive convex approximation (SCA). Finally, numerical simulations verify the enhanced DoF and improved performance of the proposed design.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员