This paper presents a new synthesis-based approach for batch image processing. Unlike existing tools that can only apply global edits to the entire image, our method can apply fine-grained edits to individual objects within the image. For example, our method can selectively blur or crop specific objects that have a certain property. To facilitate such fine-grained image editing tasks, we propose a neuro-symbolic domain-specific language (DSL) that combines pre-trained neural networks for image classification with other language constructs that enable symbolic reasoning. Our method can automatically learn programs in this DSL from user demonstrations by utilizing a novel synthesis algorithm. We have implemented the proposed technique in a tool called ImageEye and evaluated it on 50 image editing tasks. Our evaluation shows that ImageEye is able to automate 96% of these tasks.
翻译:本文提出了一种新的基于合成的批量图像处理方法。与现有工具只能对整个图像应用全局编辑的方法不同,我们的方法可以对图像中的单个对象应用细粒度编辑。例如,我们的方法可以有选择地模糊或裁剪具有特定属性的特定对象。为了方便这种细粒度的图像编辑任务,我们提出了一种神经符号领域特定语言(DSL),将用于图像分类的预训练神经网络与其他语言构造相结合,以实现符号推理。我们的方法可以通过利用一种新颖的合成算法,从用户演示中自动学习此DSL中的程序。我们已经在名为ImageEye的工具中实现了所提出的技术,并对50个图像编辑任务进行了评估。我们的评估结果显示ImageEye可以自动完成96%的这些任务。