A growing number of applications like probabilistic machine learning, sparse linear algebra, robotic navigation, etc., exhibit irregular data flow computation that can be modeled with directed acyclic graphs (DAGs). The irregularity arises from the seemingly random connections of nodes, which makes the DAG structure unsuitable for vectorization on CPU or GPU. Moreover, the nodes usually represent a small number of arithmetic operations that cannot amortize the overhead of launching tasks/kernels for each node, further posing challenges for parallel execution. To enable energy-efficient execution, this work proposes DAG processing unit (DPU) version 2, a specialized processor architecture optimized for irregular DAGs with static connectivity. It consists of a tree-structured datapath for efficient data reuse, a customized banked register file, and interconnects tuned to support irregular register accesses. DPU-v2 is utilized effectively through a targeted compiler that systematically maps operations to the datapath, minimizes register bank conflicts, and avoids pipeline hazards. Finally, a design space exploration identifies the optimal architecture configuration that minimizes the energy-delay product. This hardware-software co-optimization approach results in a speedup of 1.4$\times$, 3.5$\times$, and 14$\times$ over a state-of-the-art DAG processor ASIP, a CPU, and a GPU, respectively, while also achieving a lower energy-delay product. In this way, this work takes an important step toward enabling an embedded execution of emerging DAG workloads.


翻译:越来越多的应用软件,如概率机器学习、线性代数稀少、机器人导航等,展示了不规则的数据流计算,可以以定向周期图形(DAGs)为模型。这种不规则性来自节点似乎随机的连接,这使得DAG结构不适合在CPU或GPU上进行传导。此外,节点通常代表着少量的算术操作,无法对每个节点的发射任务/内核的间接费用进行摊合,进一步给平行执行带来挑战。为了能够实现节能执行,这项工作提议DAG处理单位(DPU)第二版,这是为固定连接的不正常的DAGs优化的专门处理器结构。它包括一个用于高效数据再利用的树形数据路,一个定制的银行注册文件档案,以及为支持不规则的注册访问而相互连接。 DPU-v2通过一个目标的汇编器,系统绘制与数据路径的操作,最大限度地减少银行间冲突,避免管道风险。最后,设计空间探索将最佳的架构配置定位用于耗资美元的重要的节价标准,在14年的D-AG-S-S-A-S-S-S-S-S-S-S-S-S-S-S-AD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-A-S-S-S-S-S-S-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月6日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员