Scale-free networks are prevalently observed in a great variety of complex systems, which triggers various researches relevant to networked models of such type. In this work, we propose a family of growth tree networks $\mathcal{T}_{t}$, which turn out to be scale-free, in an iterative manner. As opposed to most of published tree models with scale-free feature, our tree networks have the power-law exponent $\gamma=1+\ln5/\ln2$ that is obviously larger than $3$. At the same time, "small-world" property can not be found particularly because models $\mathcal{T}_{t}$ have an ultra-large diameter $D_{t}$, i.e., $D_{t}\sim|\mathcal{T}_{t}|^{\ln3/\ln5}$ where $|\mathcal{T}_{t}|$ represents vertex number. In addition, we also study random walks on tree networks $\mathcal{T}_{t}$ and derive exact solution to mean hitting time $\langle\mathcal{H}_{t}\rangle$. The results suggest that analytic formula for quantity $\langle\mathcal{H}_{t}\rangle$ as a function of vertex number $\mathcal{T}_{t}$ has a power-law form, i.e., $\langle\mathcal{H}_{t}\rangle\sim|\mathcal{T}_{t}|^{1+\ln3/\ln5}$ , a characteristic that is rarely encountered in the realm of scale-free tree networks. Lastly, we execute extensive experimental simulations, and find that empirical analysis is in strong agreement with theoretical results.
翻译:在各种复杂的系统中普遍观测到无规模网络, 这引发了与此类网络模型相关的各种研究。 在这项工作中, 我们提议了一个增长树网络的组合 $\ mathcal{ T\\ t} 美元, 以迭接方式, 其结果为无规模 。 相对于大多数已公布的无规模功能树模型, 我们的树网络拥有明显大于$\ gamma=1\ ln5/ ln2美元的权力- 美元 。 同时, “ 小世界” 属性无法找到, 特别是因为模型 $\ mathcal{ T\ t} 以超大直径 $ D% t 。 也就是说, $\ t\ t\\ t\\ t\ t\ t\ t\ t\ t} 美元 。 与大多数已出版的无规模树模型相反, 我们还要研究树网络上的随机行走道 $\\\\\ malc} t, 和直径的答案是 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ r\ ma\ ma\ ma\ ma\ max max max max max max max max max max max max max 。