Real-world networks evolve over time via additions or removals of nodes and edges. In current network evolution models, node degree varies or grows arbitrarily. A recently introduced degree-preserving network growth (DPG) family of models preserves node degree, resulting in structures significantly different from and more diverse than previous models (Nature Physics 2021, DOI:10.1038/s41567-021-01417-7). Here we present a rigorous mathematical theory underlying the DPG family of network growth models. We prove that the general problem of deciding whether a simple graph can be obtained via the DPG process from a small "kernel" graph (DPG feasibility) is NP-complete, in contrast with the surprising numerical observation that most real-world networks are actually easily constructible by this process; a dichotomy that still needs to be understood. We demonstrate how some of the well-known network models can be constructed via the DPG process, using proper parametrization.
翻译:通过增加或清除节点和边缘,现实世界的网络随着时间的推移而演变。在目前的网络演变模型中,节点度变化或任意增长。最近引入的保持学位网络增长的模型组保留节点度,导致结构与以前的模型大不相同,而且与以前的模型(自然物理2021, DOI:10.1038/s41567-021-01417-7)。我们在这里提出了一个严格的数学理论,作为DPG网络增长模型组的基础。我们证明,从一个小的“内核”图(DPG可行性)中确定一个简单的图表是否可以通过DPG进程获得,这个一般问题是不完整的,这与令人惊讶的数字观察不同,即大多数真实世界的网络实际上很容易通过这一过程构建;一个仍需要理解的二分法。我们展示一些众所周知的网络模型如何通过DPG进程,使用适当的超称化来构建。