Use of continuous shrinkage priors -- with a "spike" near zero and heavy-tails towards infinity -- is an increasingly popular approach to induce sparsity in parameter estimates. When the parameters are only weakly identified by the likelihood, however, the posterior may end up with tails as heavy as the prior, jeopardizing robustness of inference. A natural solution is to "shrink the shoulders" of a shrinkage prior by lightening up its tails beyond a reasonable parameter range, yielding the regularized version of the prior. We develop a regularization approach which, unlike previous proposals, preserves computationally attractive structures of original shrinkage priors. We study theoretical properties of the Gibbs sampler on resulting posterior distributions, with emphasis on convergence rates of the P{\'o}lya-Gamma Gibbs sampler for sparse logistic regression. Our analysis shows that the proposed regularization leads to geometric ergodicity under a broad range of global-local shrinkage priors. Essentially, the only requirement is for the prior $\pi_{\rm local}$ on the local scale $\lambda$ to satisfy $\pi_{\rm local}(0) < \infty$. If $\pi_{\rm local}(\cdot)$ further satisfies $\lim_{\lambda \to 0} \pi_{\rm local}(\lambda) / \lambda^a < \infty$ for $a > 0$, as in the case of Bayesian bridge priors, we show the sampler to be uniformly ergodic.
翻译:使用连续缩缩前置( 使用接近零的“ spike”, 重尾尾尾尾尾朝无限性) 是一种越来越受欢迎的方法, 以诱发参数估计的偏差。 但是, 当参数仅被概率微弱地确定时, 后端可能最终出现像先前那样重的尾巴, 从而危及推断的稳健性。 一个自然的解决方案是, 将尾尾巴在合理的参数范围以外, 使尾尾巴“ 缩小” 的肩部, 产生先前的正常版本。 我们开发一种正规化方法, 与以往的提议不同, 保存原始缩缩缩前的具有计算吸引力的结构。 我们研究Gibbs采样器的理论属性, 重点是P@ o} lya- Gamma Gibs取样器的趋同速度。 我们的分析表明, 拟议的正规化导致全球- 本地缩缩略图前的地理偏差, 基本上, 唯一需要的是当地 $\\ rm_ liver_ b) $ (lick_ b) ex demax ex (lif_ laf_ b) ax_ b) ax suild_ b) ax n= n====== 美元= 美元