Cyberbullying or Online harassment detection on social media for various major languages is currently being given a good amount of focus by researchers worldwide. Being the seventh most speaking language in the world and increasing usage of online platform among the Bengali speaking people urge to find effective detection technique to handle the online harassment. In this paper, we have proposed binary and multiclass classification model using hybrid neural network for bully expression detection in Bengali language. We have used 44,001 users comments from popular public Facebook pages, which fall into five classes - Non-bully, Sexual, Threat, Troll and Religious. We have examined the performance of our proposed models from different perspective. Our binary classification model gives 87.91% accuracy, whereas introducing ensemble technique after neural network for multiclass classification, we got 85% accuracy.
翻译:目前,世界各地的研究人员都非常关注在社交媒体上对各种主要语言进行网络欺凌或在线骚扰的探测。作为世界上第七大语言,孟加拉语使用者越来越多地使用在线平台,他们迫切希望找到有效的检测技术来处理在线骚扰。在本文中,我们提出了使用混合神经网络的二进制和多级分类模式,用孟加拉语进行欺凌表达检测。我们使用了流行的公开脸书网页上的44 001个用户评论,这分为五类:非大、性、威胁、Troll和宗教。我们从不同角度审视了我们提议的模型的性能。我们的二进制分类模式提供了87.91%的准确性,而引入神经网络后的通灵技术用于多级分类,我们获得了85%的准确性。