Complex reasoning problems contain states that vary in the computational cost required to determine a good action plan. Taking advantage of this property, we propose Adaptive Subgoal Search (AdaSubS), a search method that adaptively adjusts the planning horizon. To this end, AdaSubS generates diverse sets of subgoals at different distances. A verification mechanism is employed to filter out unreachable subgoals swiftly and thus allowing to focus on feasible further subgoals. In this way, AdaSubS benefits from the efficiency of planning with longer subgoals and the fine control with the shorter ones. We show that AdaSubS significantly surpasses hierarchical planning algorithms on three complex reasoning tasks: Sokoban, the Rubik's Cube, and inequality proving benchmark INT, setting new state-of-the-art on INT.
翻译:复杂的推理问题包含不同的计算成本,以决定一个良好的行动计划。我们利用这一属性,建议采用适应性子目标搜索(AdaSubS)这一可适应性调整规划视野的搜索方法。为此,AdaSubS在不同距离生成了不同的子目标组。一个核查机制用于迅速筛选无法触及的子目标,从而能够侧重于可行的进一步次级目标。这样,AdaSubS从规划效率中获益,规划时间较长的子目标,对较短的次级目标进行精细控制。我们显示AdaSubS大大超过三个复杂推理任务的等级规划算法:Sokoban,Rubik的立方,不平等证明基准INT,为INT设定新的最新技术。