In recent years, Speech Emotion Recognition (SER) has been investigated mainly transforming the speech signal into spectrograms that are then classified using Convolutional Neural Networks pretrained on generic images and fine tuned with spectrograms. In this paper, we start from the general idea above and develop a new learning solution for SER, which is based on Compact Convolutional Transformers (CCTs) combined with a speaker embedding. With CCTs, the learning power of Vision Transformers (ViT) is combined with a diminished need for large volume of data as made possible by the convolution. This is important in SER, where large corpora of data are usually not available. The speaker embedding allows the network to extract an identity representation of the speaker, which is then integrated by means of a self-attention mechanism with the features that the CCT extracts from the spectrogram. Overall, the solution is capable of operating in real-time showing promising results in a cross-corpus scenario, where training and test datasets are kept separate. Experiments have been performed on several benchmarks in a cross-corpus setting as rarely used in the literature, with results that are comparable or superior to those obtained with state-of-the-art network architectures. Our code is available at https://github.com/JabuMlDev/Speaker-VGG-CCT.


翻译:近年来,对语音情感认识(SER)的调查主要是将语音信号转换成光谱图,然后使用革命神经网络进行分类,然后用通用图像预先培训,并用光谱图进行微调。在本文中,我们从上面的一般想法出发,为SER开发一个新的学习解决方案,该解决方案以集约式革命变异器(CCTs)和发言人嵌入为基础。随着CCTs的出现,视觉变异器(VT)的学习能力与对大量数据的需求减少相结合。这在SER中很重要,因为那里通常没有大量的数据库。发言人的嵌入使网络能够获取发言者的身份代表,然后通过自我保护机制将其整合,其特征是CCT从光谱图中提取。总体而言,该解决方案能够在实时显示跨子组合情景中的前景有希望的结果,在此情况下培训和测试数据集是分开的。在SERS-D的跨子公司设置中进行了若干基准的实验,这些基准在S-B-C/M-C的网络中很少使用。在我们的代码中,这些结构与我们获得的高级/CRVGVM结果是可比较的。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月23日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员