Context: DevOps has become one of the fastest-growing software development paradigms in the industry. However, this trend has presented the challenge of ensuring secure software delivery while maintaining the agility of DevOps. The efforts to integrate security in DevOps have resulted in the DevSecOps paradigm, which is gaining significant interest from both industry and academia. However, the adoption of DevSecOps in practice is proving to be a challenge. Objective: This study aims to systemize the knowledge about the challenges faced by practitioners when adopting DevSecOps and the proposed solutions reported in the literature. We also aim to identify the areas that need further research in the future. Method: We conducted a Systematic Literature Review of 54 peer-reviewed studies. The thematic analysis method was applied to analyze the extracted data. Results: We identified 21 challenges related to adopting DevSecOps, 31 specific solutions, and the mapping between these findings. We also determined key gap areas in this domain by holistically evaluating the available solutions against the challenges. The results of the study were classified into four themes: People, Practices, Tools, and Infrastructure. Our findings demonstrate that tool-related challenges and solutions were the most frequently reported, driven by the need for automation in this paradigm. Shift-left security and continuous security assessment were two key practices recommended for DevSecOps. Conclusions: We highlight the need for developer-centered application security testing tools that target the continuous practices in DevSecOps. More research is needed on how the traditionally manual security practices can be automated to suit rapid software deployment cycles. Finally, achieving a suitable balance between the speed of delivery and security is a significant issue practitioners face in the DevSecOps paradigm.


翻译:DevSecOps的采用已成为该行业中一个增长最快的软件开发模式之一。然而,这一趋势也提出了确保安全软件交付同时又保持DevOps灵活性的挑战。DevOps的整合安全工作导致DevSecOps的版本,这引起了业界和学术界的极大兴趣。然而,在实践中采用DevSecOps是一个挑战。目标:这项研究旨在系统化关于从业人员在采用DevSecOps和文献中所报告的拟议解决方案时所面临挑战的知识。我们还旨在确定今后需要进一步研究的领域。方法:我们进行了54项同行审评研究的系统化文献审查。专题分析方法用于分析提取的数据。结果:我们查明了21项挑战,涉及采用DevSecOps、31项具体解决方案以及这些结论之间的绘图。我们还确定了这一领域的关键差距领域,从整体角度评价现有应对挑战的解决方案。研究结果分为四个主题:人、做法、工具和基础设施。我们关于安全部署系统化做法的系统化审查:我们关于安全方面的风险和解决方案的动态分析方法,最终被报告为安全SDFSEVEV的两次持续安全测试。我们关于安全方面的主要标准测试需要实现。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
从webview到flutter:详解iOS中的Web开发
前端之巅
5+阅读 · 2019年3月24日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月29日
Arxiv
8+阅读 · 2020年10月7日
Arxiv
15+阅读 · 2019年9月30日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
从webview到flutter:详解iOS中的Web开发
前端之巅
5+阅读 · 2019年3月24日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员