In 2020, covid-19 virus had reached more than 200 countries. Till December 20th 2021, 221 nations in the world had collectively reported 275M confirmed cases of covid-19 & total death toll of 5.37M. Many countries which include United States, India, Brazil, United Kingdom, Russia etc were badly affected by covid-19 pandemic due to the large population. The total confirmed cases reported in this country are 51.7M, 34.7M, 22.2M, 11.3M, 10.2M respectively till December 20, 2021. This pandemic can be controlled with the help of precautionary steps by government & civilians of the country. The early prediction of covid-19 cases helps to track the transmission dynamics & alert the government to take the necessary precautions. Recurrent Deep learning algorithms is a data driven model which plays a key role to capture the patterns present in time series data. In many literatures, the Recurrent Neural Network (RNN) based model are proposed for the efficient prediction of COVID-19 cases for different provinces. The study in the literature doesnt involve the interpretation of the model behavior & robustness. In this study, The LSTM model is proposed for the efficient prediction of active cases in each provinces of India. The active cases dataset for each province in India is taken from John Hopkins publicly available dataset for the duration from 10th June, 2020 to 4th August, 2021. The proposed LSTM model is trained on one state i.e., Maharashtra and tested for rest of the provinces in India. The concept of Explainable AI is involved in this study for the better interpretation & understanding of the model behavior. The proposed model is used to forecast the active cases in India from 16th December, 2021 to 5th March, 2022. It is notated that there will be a emergence of third wave on January, 2022 in India.


翻译:到2021年12月20日,全世界221个国家集体报告了275M的已证实的可证实19个病例,总死亡人数为5.37M。许多国家,包括美国、印度、巴西、联合王国、俄罗斯等,由于人口众多,受到可证实的19个大流行病的严重影响。许多文献中,该国报告的经证实的病例总数为51.7M、34.7M、22.2M、11.3M、10.2M至2021年12月20日。这一大流行病在国家政府和平民采取预防步骤的帮助下可以得到控制。对可证实的19个病例的早期预测有助于跟踪传输动态,并提醒政府采取必要的预防措施。经常的深度学习算法是一种数据驱动模型,在记录时间序列数据中的模式方面发挥着关键作用。在许多文献中,提出了马赫·诺尔网络(RNNN)的基础模型,用于在不同省份有效预测COVID-19案例的模式,在2021年12月20M、1021M(M)和2021M(M)之间,在2021年12月20/2021。文献中的预测将涉及对模型的休息和坚固。对模型进行解释。对19案例的早期的早期的预测有助于跟踪。在本研究中,印度的每个印度的预测中,印度的动态数据是印度的动态数据在每例中,对印度的动态数据在1月10-10-10个省份的模型中,印度的模型是印度的模型。印度的模型中,在1月中,在1月中采用的是印度的模型。印度的模型,在1号中,在1月中,在1月1月1月中采用的是印度的模型是印度的模型。印度的模型。印度的模型。印度的模型是印度的计算中,在1月1月1月1月中为印度的模型。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员