Analogical reasoning is a powerful qualitative reasoning tool that enables humans to connect two situations, and to generalize their knowledge from familiar to novel situations. Cognitive Science research provides valuable insights into the richness and complexity of analogical reasoning, together with implementations of expressive analogical reasoners with limited scalability. Modern scalable AI techniques with the potential to reason by analogy have been only applied to the special case of proportional analogy, and not to understanding higher-order analogies. In this paper, we aim to bridge the gap by: 1) formalizing six dimensions of analogy based on mature insights from Cognitive Science research, 2) annotating a corpus of fables with each of these dimensions, and 3) defining four tasks with increasing complexity that enable scalable evaluation of AI techniques. Experiments with language models and neuro-symbolic AI reasoners on these tasks reveal that state-of-the-art methods can be applied to reason by analogy with a limited success, motivating the need for further research towards comprehensive and scalable analogical reasoning by AI. We make all our code and data available.
翻译:分析推理是一种强有力的定性推理工具,它使人类能够将两种情况联系起来,并将熟悉情况的知识与新情况相提并论。认知科学研究对模拟推理的丰富性和复杂性提供了宝贵的洞察力,同时运用了可伸缩性有限的表达式模拟推理师。现代可伸缩的人工智能技术,有可能通过类比推理推理推理推理,仅适用于比例类比的特殊案例,而不适用于理解较高等级类比。在本文中,我们的目标是弥合差距,其方法是:(1) 将基于认知科学研究成熟见解的成熟见解的6个类比层面正规化,(2) 注意每个层面的易字,以及(3) 界定日益复杂的4项任务,以便能够对人工智能技术进行可扩缩的评估。 与语言模型和神经-精神-精神-AI解释师就这些任务进行的实验表明,通过比较有限的成功,可以将最新方法应用到理性,从而促使有必要进一步研究,通过AI进行全面和可伸缩的类比理推理。我们提供了我们的所有代码和数据。