This paper focuses on the distributed optimization of smooth stochastic saddle-point problems. The first part of the paper is devoted to lower bounds for the cenralized and decentralized distributed methods for smooth (strongly-)convex-(strongly-)concave saddle-point problems as well as the optimal algorithms by which these bounds are achieved. Next, we present a new federated algorithm for saddle-point problems - Extra Step Local SGD. Theoretical analysis of the new method is carried out for (strongly-)convex-(strongly-)concave and non-convex-non-concave problems. In the experimental part of the paper, we show the effectiveness of our method in practice. In particular, we train GANs in a distributed manner.
翻译:本文侧重于对平滑的随机马鞍问题进行分布式优化。文件的第一部分专门论述对(强力)凝固(强力)凝固(强力)非凝固(非凝固)凝固(非凝固)凝固(混凝土)的平滑(强力)马鞍问题以及实现这些马鞍问题的最佳算法的下限,然后我们为马鞍问题提出一个新的联合算法 - 超步骤本地 SGD。对新方法的理论分析针对(强力)凝固(强力)凝固(强力)凝固(强力)非凝固(非凝固)非凝固(非凝固)的混凝固(混凝固)的混凝结问题。在文件的实验部分,我们展示了我们方法的实际效果,特别是我们以分布方式培训GANs。