Fully dynamic graph algorithms that achieve polylogarithmic or better time per operation use either a hierarchical graph decomposition or random-rank based approach. There are so far two graph properties for which efficient algorithms for both types of data structures exist, namely fully dynamic (Delta + 1) coloring and fully dynamic maximal matching. In this paper we present an extensive experimental study of these two types of algorithms for these two problems together with very simple baseline algorithms to determine which of these algorithms are the fastest. Our results indicate that the data structures used by the different algorithms dominate their performance.
翻译:完全动态图形算法, 实现多元化或每个操作的时间更短, 要么使用等级图形分解法, 要么采用随机排序法。 到目前为止, 两种数据结构都存在两种图形属性, 即完全动态( Delta + 1) 色化和完全动态最大化匹配。 在本文中, 我们展示了对这两个问题这两种类型的算法的广泛实验性研究, 以及非常简单的基线算法, 以确定其中哪种算法是最快的 。 我们的结果表明, 不同的算法所使用的数据结构主宰了它们的性能 。