Proving ground has been a critical component in testing and validation for Connected and Automated Vehicles (CAV). Although quite a few world-class testing facilities have been under construction over the years, the evaluation of proving grounds themselves as testing approaches has rarely been studied. In this paper, we present the first attempt to systematically evaluate CAV proving grounds and contribute to a generative sample-based approach to assessing the representation of traffic scenarios in proving grounds. Leveraging typical use cases extracted from naturalistic driving events, we establish a strong link between proving ground testing results of CAVs and their anticipated public street performance. We present benchmark results of our approach on three world-class CAV testing facilities: Mcity, Almono (Uber ATG), and Kcity. We successfully show the overall evaluation of these proving grounds in terms of their capability to accommodate real-world traffic scenarios. We believe that when the effectiveness of a testing ground itself is validated, the testing results would grant more confidence for CAV public deployment.


翻译:验证地是连接和自动化车辆测试和验证的一个关键组成部分。虽然多年来建造了一些世界级的测试设施,但很少研究作为测试方法的验证地本身的评价。在本文件中,我们首次尝试系统地评估CAV验证地,并促成一种基于基因的样本方法,用以评估验证场中交通情况的代表性。我们利用自然驾驶事件产生的典型使用案例,在证明CAV的地面测试结果及其预期的公共街道性能之间建立了强有力的联系。我们介绍了我们在三个世界级的CAV测试设施:Mcity、Almono(Uber ATG)和Kcity上采用的方法的基准结果。我们成功地展示了对这些验证地的总体评价,说明它们是否有能力适应现实世界交通情况。我们认为,当测试场本身的有效性得到验证时,测试结果将给CAV的公共部署带来更大的信心。

0
下载
关闭预览

相关内容

会议涵盖了从理论结果到具体应用的各个方面,重点讨论了实际的验证工具以及实现这些工具所需的算法和技术。CAV认为,在向生物系统和计算机安全等新领域扩展的同时,继续推动硬件和软件验证的进步至关重要。会议记录将发表在《计算机科学》系列的斯普林格-维拉格讲稿中。预计将邀请一些论文参加《系统设计中的形式化方法》专刊和《ACM杂志》。官网链接:http://i-cav.org/2019/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员