For any $\epsilon>0$, Laue and Matijevi\'{c} [CCCG'07, IPL'08] give a PTAS for finding a $(1+\epsilon)$-approximate solution to the $k$-hop MST problem in the Euclidean plane that runs in time $(n/\epsilon)^{O(k/\epsilon)}$. In this paper, we present an algorithm that runs in time $(n/\epsilon)^{O(\log k \cdot(1/\epsilon)^2\cdot\log^2(1/\epsilon))}$. This gives an improvement on the dependency on $k$ on the exponent, while having a worse dependency on $\epsilon$. As in Laue and Matijevi\'{c}, we follow the framework introduced by Arora for Euclidean TSP. Our key ingredients include exponential distance scaling and compression of dynamic programming state tables.
翻译:对于任何$epsilon>0$, Laue 和 Matijevi\'{c} [CCCG'07, IPL'08] 给予一个PTAS, 以寻找一个( 1 ⁇ epsilon)$- hop MST 问题的近似解决方案, 解决在欧几里德飞机上运行的时间为$( n/\ epsilon) ⁇ O( k/\ epsilon) {{c} $( n/\ epsilon) 。 在本文中, 我们呈现一种可及时运行的算法 $( /\ epsilon) }O( log k k\ cdodot (1/\ epsilon) }% 2\ cdot\ log\ log\ 2( 2( 1/\ epsilon)} $。 这改善了对美元的依赖度, 而更依赖 $\ epsilon$。 如 Lau 和 Matijev\\\ {} 我们遵循阿罗拉为欧亚为 用于 TEclideidean TSP 引入的框架。 我们的关键成分包括 动态编程状态表的指数的指数缩缩缩。 。 。 我们的关键成分包括 。