We provide a theoretical study of Algebraic Geometry codes constructed from abelian surfaces defined over finite fields. We give a general bound on their minimum distance and we investigate how this estimation can be sharpened under the assumption that the abelian surface does not contain low genus curves. This approach naturally leads us to consider Weil restrictions of elliptic curves and abelian surfaces which do not admit a principal polarization.
翻译:我们从理论上研究从边缘表面定义的有限面积所构造的代数几何参数。我们给一个普通的界限以其最小距离,并研究如何在假设贝贝表不包括低等离子曲线的情况下,使这一估计更加精确。 这种方法自然会让我们考虑韦尔对椭圆曲线和亚等表面的限制,这些限制并不承认主要的两极分化。