Quantum machine learning (QML) has emerged as an important area for Quantum applications, although useful QML applications would require many qubits. Therefore our paper is aimed at exploring the successful application of the Quantum Support Vector Machine (QSVM) algorithm while balancing several practical and technical considerations under the Noisy Intermediate-Scale Quantum (NISQ) assumption. For the quantum SVM under NISQ, we use quantum feature maps to translate data into quantum states and build the SVM kernel out of these quantum states, and further compare with classical SVM with radial basis function (RBF) kernels. As data sets are more complex or abstracted in some sense, classical SVM with classical kernels leads to less accuracy compared to QSVM, as classical SVM with typical classical kernels cannot easily separate different class data. Similarly, QSVM should be able to provide competitive performance over a broader range of data sets including ``simpler'' data cases in which smoother decision boundaries are required to avoid any model variance issues (i.e., overfitting). To bridge the gap between ``classical-looking'' decision boundaries and complex quantum decision boundaries, we propose to utilize general shallow unitary transformations to create feature maps with rotation factors to define a tunable quantum kernel, and added regularization to smooth the separating hyperplane model. We show in experiments that this allows QSVM to perform equally to SVM regardless of the complexity of the data sets and outperform in some commonly used reference data sets.


翻译:量子机器学习(QML)已经成为量子应用的一个重要领域,尽管有用的 QML 应用需要许多量子。 因此,我们的文件旨在探索量子支持矢量机(QSVM)算法的成功应用,同时平衡Noisy 中级量子(NISQ)假设下的若干实际考虑和技术考虑。对于NISQ下的量子SVM来说,我们使用量子特征地图将数据转换成量子状态,并将SVM 机库从这些量子状态中建立出SVM,并进一步与具有辐射基础功能的经典SVM 机库(RBF) 功能进行对比。由于数据集在某种意义上更为复杂或抽象,传统的SVM 机库与QSVM 假设下的一些实际考虑和技术考虑比较不那么精确。对于典型的典型的经典SVM 机库来说,我们使用量子图来提供更为广泛的高的性能, 包括VPorer Refer 数据 样式的精度参考, 和 直径基调的Sral-ralalalalalalalal 等数据, 范围需要使用某种模型, 等量级的精确的模型来解释。

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
9+阅读 · 2019年11月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
5+阅读 · 2019年2月28日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员