We study the classic problem of fairly dividing a heterogeneous and divisible resource -- represented by a cake, $[0,1]$ -- among $n$ agents. This work considers an interesting variant of the problem where agents are embedded on a graph. The graphical constraint entails that each agent evaluates her allocated share only against her neighbor's share. Given a graph, the goal is to efficiently find a locally envy-free allocation where every agent values her share to be at least as much as any of her neighbor's share. The best known algorithm (by Aziz and Mackenzie) for finding envy-free cake divisions has a hyper-exponential query complexity. One of the key technical contributions of this work is to identify a non-trivial graph structure -- tree graphs with depth at-most two (Depth2Tree) -- on $n$ agents that admits a query efficient cake-cutting protocol (under the Robertson-Webb query model). In particular, we develop a discrete protocol that finds a locally envy-free allocation among $n$ agents on depth-two trees with at-most $O(n^3 \log(n))$ cuts on the cake. For the special case of Depth2Tree where every non-root agent is connected to at-most two agents (2-Star), we show that $O(n^2)$ queries suffice. We complement our algorithmic results with establishing a lower bound of $\Omega(n^2)$ (evaluation) queries for finding a locally envy-free allocation among $n$ agents on a 1-Star graph (under the assumption that the root agent partitions the cake into $n$ connected pieces).
翻译:我们研究一个典型的问题,即如何在美元代理商之间公平分解一个多样化和可变的资源 -- -- 以蛋糕为代表,$[10,1]美元 -- -- 以美元代理商为代表。这项工作考虑到一个有趣的问题变式,即代理商被嵌入一个图表。图形限制意味着每个代理商只能根据邻居的份额来评估其分配的份额。从一个图表看,目标是高效率地找到一个当地无嫉妒性的分配办法,让每个代理商将其份额至少与其邻居份额的任何份额相提并论。一个最著名的算法(由Aziz和Mackenzie)在寻找无嫉妒性蛋糕分解的分解中具有超额的查询复杂性。这项工作的关键技术贡献之一是确定一个非三角图表结构 -- -- 深度为2的树图(Deph2Tree) -- -- 接受一个查询高效蛋糕分解协议的美元代理商(根据Robertson-Webb查询模型) 。特别是,我们开发了一个离心性协议,在最接近O$2美元的深层代理商之间找到一种无嫉妒性的分配办法(n),在我们最低的正平基代理商O2美元交易分解的分算中,每个O2美元交易分解的硬的代理商在1美元交易中将一个特别的分算。