We review the Preparata-Sarwate algorithm, a simple $O(n^{3.5})$ method for computing the characteristic polynomial, determinant and adjugate of an $n \times n$ matrix using only ring operations together with exact divisions by small integers. The algorithm is a baby-step giant-step version of the more well-known Faddeev-Leverrier algorithm. We make a few comments about the algorithm and evaluate its performance empirically.
翻译:我们审查Preparata-Sarwate算法,这是一种简单的$O(n ⁇ 3.5})方法,用来计算一个美元为n-timen n$的矩阵的特性多元性、决定因素和辅助性,仅使用环形操作和精确的微小整数来计算。这个算法是更著名的Faddeev-Leverrier算法的婴儿级大步版本。我们对算法提出几点评论,并用经验评估其性能。