Deep Recurrent Neural Networks (RNN) continues to find success in predictive decision-making with temporal event sequences. Recent studies have shown the importance and practicality of visual analytics in interpreting deep learning models for real-world applications. However, very limited work enables interactions with deep learning models and guides practitioners to form hypotheticals towards the desired prediction outcomes, especially for sequence prediction. Specifically, no existing work has addressed the what-if analysis and value perturbation along different time-steps for sequence outcome prediction. We present a model-agnostic visual analytics tool, HypperSteer, that steers hypothetical testing and allows users to perturb data for sequence predictions interactively. We showcase how HypperSteer helps in steering patient data to achieve desired treatment outcomes and discuss how HypperSteer can serve as a comprehensive solution for other practical scenarios.
翻译:深层经常性神经网络(RNN)继续发现在预测决策中成功使用时间事件序列的预测性决策,最近的研究表明视觉分析在解释用于现实应用的深学习模型方面的重要性和实用性,然而,由于工作非常有限,能够与深层学习模型进行互动,并指导从业者形成假设,以取得预期结果,特别是序列预测。具体地说,没有一项现有工作处理在序列结果预测的不同时间步骤上进行什么分析和价值扰动的问题。我们提出了一个模型-不可知性视觉分析工具,即HypperSteer,用以指导假设测试并使用户能够交互地为序列预测渗透数据。我们展示了HypperSteer如何帮助引导病人数据实现预期治疗结果,并讨论Hypper如何能成为其他实际情景的全面解决方案。