Image augmentation techniques apply transformation functions such as rotation, shearing, or color distortion on an input image. These augmentations were proven useful in improving neural networks' generalization ability. In this paper, we present a novel augmentation operation, InAugment, that exploits image internal statistics. The key idea is to copy patches from the image itself, apply augmentation operations on them, and paste them back at random positions on the same image. This method is simple and easy to implement and can be incorporated with existing augmentation techniques. We test InAugment on two popular datasets -- CIFAR and ImageNet. We show improvement over state-of-the-art augmentation techniques. Incorporating InAugment with Auto Augment yields a significant improvement over other augmentation techniques (e.g., +1% improvement over multiple architectures trained on the CIFAR dataset). We also demonstrate an increase for ResNet50 and EfficientNet-B3 top-1's accuracy on the ImageNet dataset compared to prior augmentation methods. Finally, our experiments suggest that training convolutional neural network using InAugment not only improves the model's accuracy and confidence but its performance on out-of-distribution images.
翻译:图像增强技术在输入图像上应用旋转、剪切或色彩扭曲等转换功能。 这些增强功能被证明有助于改善神经网络的普及能力。 在本文中, 我们展示了一个新的增强操作, 利用图像内部统计。 关键的想法是复制图像本身的补丁, 对图像本身应用扩增操作, 并将其粘贴在同一图像上的随机位置。 这种方法简单易用, 并且可以与现有的增强技术结合。 我们测试两种受欢迎的数据集 -- -- CIFAR和图像Net -- -- 的增强。 我们展示了最新增强技术的改进。 采用自动增强功能会大大改进其他增强技术( 例如, CIFAR数据集所培训的多个架构的+1%的改进)。 我们还展示了ResNet50 和 高效Net- B3 顶部与先前增强方法相比在图像网络数据集上的精度。 最后, 我们的实验显示, 使用 InAugment 不仅提高模型的精确度和信任度, 而且还提高了其外向图像的性能。