Black Sigatoka disease severely decreases global banana production, and climate change aggravates the problem by altering fungal species distributions. Due to the heavy financial burden of managing this infectious disease, farmers in developing countries face significant banana crop losses. Though scientists have produced mathematical models of infectious diseases, adapting these models to incorporate climate effects is difficult. We present MR. NODE (Multiple predictoR Neural ODE), a neural network that models the dynamics of black Sigatoka infection learnt directly from data via Neural Ordinary Differential Equations. Our method encodes external predictor factors into the latent space in addition to the variable that we infer, and it can also predict the infection risk at an arbitrary point in time. Empirically, we demonstrate on historical climate data that our method has superior generalization performance on time points up to one month in the future and unseen irregularities. We believe that our method can be a useful tool to control the spread of black Sigatoka.
翻译:黑西加托卡病严重减少全球香蕉产量,气候变化通过改变真菌物种分布而使问题更加严重。由于管理这一传染病的财政负担沉重,发展中国家的农民面临巨大的香蕉作物损失。虽然科学家已经制作了传染病的数学模型,但很难将这些模型纳入气候影响。我们介绍了一个神经网络MR.NODE(多功能预测神经数据网络),这个神经网络通过神经普通差异数据直接生成黑西加托卡感染的动态模型。我们的方法将外部预测因素编码入潜在空间,再加上我们所推断的变量,它也可以在任意的时间点预测感染风险。我们从历史气候数据中可以看出,我们的方法在时间点上优于一般性表现,在未来的一个月至一个月的时间点和不可见的不规则。我们认为,我们的方法可以成为控制黑西加托卡蔓延的有用工具。