This paper presents a method for hardware trojan detection in integrated circuits. Unsupervised deep learning is used to classify wide field-of-view (4x4 mm$^2$), high spatial resolution magnetic field images taken using a Quantum Diamond Microscope (QDM). QDM magnetic imaging is enhanced using quantum control techniques and improved diamond material to increase magnetic field sensitivity by a factor of 4 and measurement speed by a factor of 16 over previous demonstrations. These upgrades facilitate the first demonstration of QDM magnetic field measurement for hardware trojan detection. Unsupervised convolutional neural networks and clustering are used to infer trojan presence from unlabeled data sets of 600x600 pixel magnetic field images without human bias. This analysis is shown to be more accurate than principal component analysis for distinguishing between field programmable gate arrays configured with trojan free and trojan inserted logic. This framework is tested on a set of scalable trojans that we developed and measured with the QDM. Scalable and TrustHub trojans are detectable down to a minimum trojan trigger size of 0.5% of the total logic. The trojan detection framework can be used for golden-chip free detection, since knowledge of the chips' identities is only used to evaluate detection accuracy
翻译:本文展示了集成电路中硬件天体探测方法。 未经监督的深层学习用于对宽视场进行分类( 4x4毫米 $2美元), 使用量控技术和改进的钻石材料加强QDM磁成像, 提高磁场的敏感度, 增加系数为4, 测量速度比先前的演示值增加16倍。 这些升级有助于首次演示用于硬件天体探测的QDM磁场测量。 使用未经监督的锥体神经网络和集群, 从无人类偏差的600x600平ixel磁场图像的未标记数据集中推断出天体。 这一分析显示比主要组成部分分析更准确, 用于区分用无铁质和铁质插入逻辑配置的实地可编程门阵列。 这个框架由一套可缩放的天体测量仪进行测试, 我们与QDM 一起开发和测量。 可缩放和信任天体网络和组合只能从最小的天体探测到最小的天体探测逻辑框架。 使用0.5%的金质检测工具, 的完全只能被检测到最低的逻辑框架。