In this paper we consider pricing of insurance contracts for breast cancer risk based on three multiple state models. Using population data in England and data from the medical literature, we calibrate a collection of semi-Markov and Markov models. Considering an industry-based Markov model as a baseline model, we demonstrate the strengths of a more detailed model while showing the importance of accounting for duration dependence in transition rates. We quantify age-specific cancer incidence and cancer survival by stage along with type-specific mortality rates based on the semi-Markov model which accounts for unobserved breast cancer cases and progression through breast cancer stages. Using the developed models, we obtain actuarial net premiums for a specialised critical illness and life insurance product. Our analysis shows that the semi-Markov model leads to results aligned with empirical evidence. Our findings point out the importance of accounting for the time spent with diagnosed or undiagnosed pre-metastatic breast cancer in actuarial applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
相关基金
Top
微信扫码咨询专知VIP会员