It is almost always easier to find an accurate-but-complex model than an accurate-yet-simple model. Finding optimal, sparse, accurate models of various forms (linear models with integer coefficients, decision sets, rule lists, decision trees) is generally NP-hard. We often do not know whether the search for a simpler model will be worthwhile, and thus we do not go to the trouble of searching for one. In this work, we ask an important practical question: can accurate-yet-simple models be proven to exist, or shown likely to exist, before explicitly searching for them? We hypothesize that there is an important reason that simple-yet-accurate models often do exist. This hypothesis is that the size of the Rashomon set is often large, where the Rashomon set is the set of almost-equally-accurate models from a function class. If the Rashomon set is large, it contains numerous accurate models, and perhaps at least one of them is the simple model we desire. In this work, we formally present the Rashomon ratio as a new gauge of simplicity for a learning problem, depending on a function class and a data set. The Rashomon ratio is the ratio of the volume of the set of accurate models to the volume of the hypothesis space, and it is different from standard complexity measures from statistical learning theory. Insight from studying the Rashomon ratio provides an easy way to check whether a simpler model might exist for a problem before finding it, namely whether several different machine learning methods achieve similar performance on the data. In that sense, the Rashomon ratio is a powerful tool for understanding why and when an accurate-yet-simple model might exist. If, as we hypothesize in this work, many real-world data sets admit large Rashomon sets, the implications are vast: it means that simple or interpretable models may often be used for high-stakes decisions without losing accuracy.
翻译:找到一个准确但复杂模型几乎总是容易一些。 找到一个准确但复杂模型比找到一个准确但尚不简单模型容易得多。 找到最优化、 稀少、 准确的各种形式模型( 具有整数系数的线性模型、 决策组、 规则列表、 决策树) 通常是NP- 硬的。 我们常常不知道寻找更简单模型是否值得, 因此我们不会遇到搜索一个模型的麻烦 。 在这项工作中, 我们问一个重要的实际问题: 准确的模型能否被证明存在, 或者在明确搜索之前, 可能已经存在。 我们假设的是, 存在一个最简单、 简单、 简单、 准确的模型, 存在一个简单、 简单、 简单、 精确的模型。 这个假设假设是, Rashomon 的大小, 在功能组中, 可能存在许多准确的模型, 或者说其中至少有一个简单的模型。 在这项工作中, 我们正式展示了Rashomon 的比重的比重, 当它从一个简单、 直观的比重的比重的比重的比重的比重的比重的比重的比重的比重, 机器的比重的比重的比重的比重的比重, 在一个序列的算一个不同的计算法的计算法是一个不同的计算, 的比重的比重的比重的比重的比重的比重的比重的比重的比重的比重的比值, 的比值是, 的比重的比值, 的比值是, 的比重的比重的比重的比重的比值是一个不同的计算值的比重的比重的比重的比重的比重的比重的比值, 的比重的比重的比重的比重的比重的比重的比重的比值是一个比值, 的比值是一个比重的比值, 的比值, 的比值的比值的比值的比值的比值的比值的比值的比值是一个比值是一个比值, 的比值的比值的比值是比值的比值的比值的比值的比值的比值的比值的比值的比值,