Transcending the binary categorization of racist and xenophobic texts, this research takes cues from social science theories to develop a four dimensional category for racism and xenophobia detection, namely stigmatization, offensiveness, blame, and exclusion. With the aid of deep learning techniques, this categorical detection enables insights into the nuances of emergent topics reflected in racist and xenophobic expression on Twitter. Moreover, a stage wise analysis is applied to capture the dynamic changes of the topics across the stages of early development of Covid-19 from a domestic epidemic to an international public health emergency, and later to a global pandemic. The main contributions of this research include, first the methodological advancement. By bridging the state-of-the-art computational methods with social science perspective, this research provides a meaningful approach for future research to gain insight into the underlying subtlety of racist and xenophobic discussion on digital platforms. Second, by enabling a more accurate comprehension and even prediction of public opinions and actions, this research paves the way for the enactment of effective intervention policies to combat racist crimes and social exclusion under Covid-19.
翻译:这份研究从社会科学理论的二元分类中汲取了社会科学理论的提示,即为种族主义和仇外心理的检测而发展四维类别,即污名化、冒犯、指责和排斥。在深思熟虑的技巧的帮助下,这种绝对的发现使人们能够洞察到在Twitter上的种族主义和仇外言论中反映的突发议题的细微差别。此外,还应用了一个阶段的明智分析来捕捉Covid-19早期发展阶段的动态变化,从国内流行病到国际公共卫生紧急情况,后来又到全球流行病。这项研究的主要贡献包括:首先,方法的进步。通过将最先进的计算方法与社会科学观点联系起来,这一研究为今后的研究提供了一个有意义的方法,以深入了解数字平台上的种族主义和仇外讨论的潜在微妙性。第二,通过更准确地理解甚至预测公众意见和行动,这一研究为在Covid-19下颁布有效干预政策以打击种族主义犯罪和社会排斥铺平了道路。