Robots are used for collecting samples from natural environments to create models of, for example, temperature or algae fields in the ocean. Adaptive informative sampling is a proven technique for this kind of spatial field modeling. This paper compares the performance of humans versus adaptive informative sampling algorithms for selecting informative waypoints. The humans and simulated robot are given the same information for selecting waypoints, and both are evaluated on the accuracy of the resulting model. We developed a graphical user interface for selecting waypoints and visualizing samples. Eleven participants iteratively picked waypoints for twelve scenarios. Our simulated robot used Gaussian Process regression with two entropy-based optimization criteria to iteratively choose waypoints. Our results show that the robot can on average perform better than the average human, and approximately as good as the best human, when the model assumptions correspond to the actual field. However, when the model assumptions do not correspond as well to the characteristics of the field, both human and robot performance are no better than random sampling.
翻译:机器人用于从自然环境中采集样本,以创建模型,例如海洋中的温度或藻类田地。适应性信息抽样是这种空间场域模型的证明技术。本文比较了人类的性能,比较了选择信息化路标的适应性信息抽样算法。人类和模拟机器人在选择路标时得到的信息与选择途径点时相同,两者都根据所生成模型的准确性进行了评估。我们开发了一个图形用户界面,用于选择路标和可视化样本。11个参与者为12个场景迭接地选择了路标。我们模拟机器人使用两种基于加密优化标准的高斯进程回归,以迭接方式选择路标。我们的结果显示,当模型假设与实际场相对应时,机器人的性能平均优于普通人,大约与最佳人一样。然而,当模型假设与实地特征不匹配时,人类和机器人的性能都不如随机抽样。