Automatic spoken language identification (LID) is a very important research field in the era of multilingual voice-command-based human-computer interaction (HCI). A front-end LID module helps to improve the performance of many speech-based applications in the multilingual scenario. India is a populous country with diverse cultures and languages. The majority of the Indian population needs to use their respective native languages for verbal interaction with machines. Therefore, the development of efficient Indian spoken language recognition systems is useful for adapting smart technologies in every section of Indian society. The field of Indian LID has started gaining momentum in the last two decades, mainly due to the development of several standard multilingual speech corpora for the Indian languages. Even though significant research progress has already been made in this field, to the best of our knowledge, there are not many attempts to analytically review them collectively. In this work, we have conducted one of the very first attempts to present a comprehensive review of the Indian spoken language recognition research field. In-depth analysis has been presented to emphasize the unique challenges of low-resource and mutual influences for developing LID systems in the Indian contexts. Several essential aspects of the Indian LID research, such as the detailed description of the available speech corpora, the major research contributions, including the earlier attempts based on statistical modeling to the recent approaches based on different neural network architectures, and the future research trends are discussed. This review work will help assess the state of the present Indian LID research by any active researcher or any research enthusiasts from related fields.


翻译:印度是一个人口众多的国家,有着不同的文化和语言。印度大部分人口需要使用各自的母语与机器进行口头互动。因此,开发高效的印度口语识别系统有助于印度社会各个阶层应用智能技术。印度口语识别系统在过去二十年中开始形成势头,这主要是由于印度语言开发了几种标准的多语言语言语言语音公司。尽管在这一领域已经取得了显著的研究进展,但从我们的知识中可以取得最佳的,并没有作出许多尝试来对这些研究进行集体审查。在这项工作中,我们首先尝试对印度口语识别研究领域进行全面审查。已经进行了深入分析,以强调印度社会各个阶层发展语言系统所面临的独特挑战。印度口语识别领域在过去二十年中开始形成势头,这主要归功于印度口语标准化语言的标准多语语音公司的发展。尽管在这方面已经取得了显著的研究进展,但从我们的知识的最好角度来看,并没有作出多少尝试来对这些语言进行集体分析。我们首先尝试对印度口语识别研究领域进行全面审查。印度口语识别系统开发的低资源和相互影响。印度口语识别系统所面临的独特挑战主要来自印度语言的这一研究领域,包括印度语言数据库研究领域的一些基本方面,包括最近以研究研究研究研究研究领域或今后以印度语言网络为基础的各种研究研究研究研究趋势,例如对印度的深入研究研究研究的深入评估,将进行的任何研究研究,包括现有研究研究研究研究研究研究研究研究研究,根据对印度语言网络进行的任何研究的深入研究,对印度的深入评估。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员