Mainstream numerical Partial Differential Equation (PDE) solvers require discretizing the physical domain using a mesh. Mesh movement methods aim to improve the accuracy of the numerical solution by increasing mesh resolution where the solution is not well-resolved, whilst reducing unnecessary resolution elsewhere. However, mesh movement methods, such as the Monge-Ampere method, require the solution of auxiliary equations, which can be extremely expensive especially when the mesh is adapted frequently. In this paper, we propose to our best knowledge the first learning-based end-to-end mesh movement framework for PDE solvers. Key requirements of learning-based mesh movement methods are alleviating mesh tangling, boundary consistency, and generalization to mesh with different resolutions. To achieve these goals, we introduce the neural spline model and the graph attention network (GAT) into our models respectively. While the Neural-Spline based model provides more flexibility for large deformation, the GAT based model can handle domains with more complicated shapes and is better at performing delicate local deformation. We validate our methods on stationary and time-dependent, linear and non-linear equations, as well as regularly and irregularly shaped domains. Compared to the traditional Monge-Ampere method, our approach can greatly accelerate the mesh adaptation process, whilst achieving comparable numerical error reduction.
翻译:移动方法的目的是通过增加网格分辨率来提高数字解决方案的准确性。 网格移动方法的目的是在解决方案没有很好解决的地方增加网格分辨率,同时减少其他地方不必要的分辨率。 但是,网格移动方法,如蒙古-安培方法,需要用辅助方程式来解决,这种方程式可能非常昂贵,特别是当网格经常调整时,这种方程式可能非常昂贵。 在本文中,我们向我们最了解的各国提议,以学习为基础的PDE解答者端到端网格移动框架。 以学习为基础的网格移动方法的关键要求是减少网格、边界一致性和一般化,以便与不同分辨率的网格。为了实现这些目标,我们分别在模型中采用神经线型模型和图形关注网络(GAT)。 以神经-Spline为基础的模型为大变形提供了更大的灵活性,而基于GAT的模型可以处理以更复杂形状显示的域域,并更好地进行微妙的本地变形。 我们验证了我们以固定和时间为基础的网格移动方法,线性和不固定的公式和不固定的递减法,可以作为常规的变式的变式的变形,同时实现可变式的、可比较的、可比较的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式、可变式的、可变式、可变式、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式、可变式的、可变式的、可变式的、可变的、可变式的、可变式、可变式的、可变式、可变式的、可变式的、可变式的、可变式的、可变式的、可变式的、可变式、可变的、可变式、可变式的、可变式、可变式、可制、可变式、可制式的、可变式、可制式、可变式的、可变式的、可变式的、可制式的、可