The last few years have seen a surge of work on high dimensional statistics under privacy constraints, mostly following two main lines of work: the ``worst case'' line, which does not make any distributional assumptions on the input data; and the ``strong assumptions'' line, which assumes that the data is generated from specific families, e.g., subgaussian distributions. In this work we take a middle ground, obtaining new differentially private algorithms with polynomial sample complexity for estimating quantiles in high-dimensions, as well as estimating and sampling points of high Tukey depth, all working under very mild distributional assumptions. From the technical perspective, our work relies upon deep robustness results in the convex geometry literature, demonstrating how such results can be used in a private context. Our main object of interest is the (convex) floating body (FB), a notion going back to Archimedes, which is a robust and well studied high-dimensional analogue of the interquantile range. We show how one can privately, and with polynomially many samples, (a) output an approximate interior point of the FB -- e.g., ``a typical user'' in a high-dimensional database -- by leveraging the robustness of the Steiner point of the FB; and at the expense of polynomially many more samples, (b) produce an approximate uniform sample from the FB, by constructing a private noisy projection oracle.


翻译:在过去几年里,在隐私限制下,关于高维统计的工作激增,主要是在两种主要工作线上:“worst case' 线,对输入数据没有做出任何分布性假设;以及“strong suppose' 线,假设数据来自特定家庭,例如亚高空分布。在这项工作中,我们采取了中间立场,获得了具有多元抽样复杂性的新的有差异的私人算法,以估算高二度的孔径,以及估算和取样高塔基深度的点,这些点都是在非常温和的分配假设下工作。从技术角度讲,我们的工作依赖于对convex几何数据进行任何分配的假设;以及“坚固的假设”线,它假定数据来自特定家庭,例如亚低端(convex)漂浮体(FB),一个概念可以追溯到Archimedimeds,这是对高二维范围范围内的高度样本进行稳健和研究的高度类比。我们展示了如何私下、多基深度的多基点(blogy) 和多基级(a) 的精度样本中,用Fmal-imalalalalalal 数据库中,一个高端(a) F-toiming 的内压的内压点。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员