We study the problem of finding maximal exact matches (MEMs) between a query string $Q$ and a labeled directed acyclic graph (DAG) $G=(V,E,\ell)$ and subsequently co-linearly chaining these matches. We show that it suffices to compute MEMs between node labels and $Q$ (node MEMs) to encode full MEMs. Node MEMs can be computed in linear time and we show how to co-linearly chain them to solve the Longest Common Subsequence (LCS) problem between $Q$ and $G$. Our chaining algorithm is the first to consider a symmetric formulation of the chaining problem in graphs and runs in $O(k^2|V| + |E| + kN\log N)$ time, where $k$ is the width (minimum number of paths covering the nodes) of $G$, and $N$ is the number of node MEMs. We then consider the problem of finding MEMs when the input graph is an indexable elastic founder graph (subclass of labeled DAGs studied by Equi et al., Algorithmica 2022). For arbitrary input graphs, the problem cannot be solved in truly sub-quadratic time under SETH (Equi et al., ICALP 2019). We show that we can report all MEMs between $Q$ and an indexable elastic founder graph in time $O(nH^2 + m + M_\kappa)$, where $n$ is the total length of node labels, $H$ is the maximum number of nodes in a block of the graph, $m = |Q|$, and $M_\kappa$ is the number of MEMs of length at least $\kappa$. The results extend to the indexing problem, where the graph is preprocessed and a set of queries is processed as a batch.


翻译:我们研究在查询字符串 $Q 和 标注的环状图(DAG) $G = (V,E,\ell) $G = (V,E,\ell) 之间找到最大精确匹配(MEM ) 的问题。 我们显示只要在节点标签和 $Q (node MEM) 之间找到最大精确匹配(MEM ) 来编码完整的 MTM 。 可以用线性时间来计算节点 MEM, 并显示如何将它们连结起来解决最长期常见的离子(LCS) 美元和 $G$ 。 我们的链式算法是首先考虑在图形中链条问题的对应配方配方, $2\\ + + + + ⁇ + + $ + kN\ log N) 的时间, $k 的宽度( 包含节点数的路径数) $, 而 $NMMMMM(L) 和 数字 。 我们然后考虑在输入图表时找到 MEMMMUS 的问题, 的 问题是, 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
25+阅读 · 2021年4月2日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
25+阅读 · 2021年4月2日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员