This work resolve a longstanding open question in automata theory, i.e. the {\it linear-bounded automata question} ( shortly, {\it LBA question}), which can also be phrased succinctly in the language of computational complexity theory as $NSPACE[n]\overset{?}{=}DSPACE[n]$. We prove that $NSPACE[n]\neq DSPACE[n]$. Our proof technique is based on diagonalization against all deterministic Turing machines working in $O(n)$ space. Our proof also implies the following consequences: (1) There exists no deterministic Turing machine working in $O(\log n)$ space deciding the $st$-connectivity question (STCON); (2) $L\neq NL$; (3) $L\neq P$.
翻译:这项工作解决了自动化理论中一个长期未决问题,即 ~ ~ ~ 线性自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的质问 } ( ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 。 我们证明, $ SPACE\\\ neq DSPACE $ 。 我们的证据技术基于对在 $O (n) 空间工作的所有确定性图灵机器的分解。 我们的证据还意味着以下后果:(1) 不存在以 $O (\ log n ) 空间决定 $ (STCON) 的确定性图灵机; (2) $ L\ neq NL$; (3) $L\ Q P$ 。