Let $\Phi$ be a uniformly random $k$-SAT formula with $n$ variables and $m$ clauses. We study the algorithmic task of finding a satisfying assignment of $\Phi$. It is known that a satisfying assignment exists with high probability at clause density $m/n < 2^k \log 2 - \frac{1}{2} (\log 2 + 1) + o_k(1)$, while the best polynomial-time algorithm known, the Fix algorithm of Coja-Oghlan, finds a satisfying assignment at the much lower clause density $(1 - o_k(1)) 2^k \log k / k$. This prompts the question: is it possible to efficiently find a satisfying assignment at higher clause densities? To understand the algorithmic threshold of random $k$-SAT, we study low degree polynomial algorithms, which are a powerful class of algorithms including Fix, Survey Propagation guided decimation (with bounded or mildly growing number of message passing rounds), and paradigms such as message passing and local graph algorithms. We show that low degree polynomial algorithms can find a satisfying assignment at clause density $(1 - o_k(1)) 2^k \log k / k$, matching Fix, and not at clause density $(1 + o_k(1)) \kappa^* 2^k \log k / k$, where $\kappa^* \approx 4.911$. This shows the first sharp (up to constant factor) computational phase transition of random $k$-SAT for a class of algorithms. Our proof establishes and leverages a new many-way overlap gap property tailored to random $k$-SAT.
翻译:$\ phi$ 是一个单一随机的 $k$- SAT 公式, 包含 $n 变量和 $ 条款。 我们研究找到一个满意的 $\ phi$ 的算法任务。 众所周知, 一个满足的任务存在的可能性很高, 在条款密度为$/ n < 2 k\log 2 -\ frac{1\\\\\\ 2} (\log 2+1 + 1) + o_ k(1)$, 而已知的最好的多元时间算法, Coja- Oghlan 的固定算法, 发现一个满足的任务, 在更低的条款密度为$( 1 - o_ k(1)\ k(1)) 中找到一个满足的任务任务 $( 1 - o_ or_ k) kkx 。 这促使问题 : 能否在更高的条款密度上找到满意的指定任务 $ 2? kk? 要理解随机 $ $ = 1 的算法门槛值, 我们研究的是许多高的多元算法, 算法, 包括 修补、 调查 prop prink ental- kal- klax lax lax lax lax 。