We present an architecture for the provision of video Content Delivery Network (CDN) functionality as a service over a multi-domain cloud. We introduce the concept of a CDN slice, that is, a CDN service instance which is created upon a content provider's request, is autonomously managed, and spans multiple potentially heterogeneous edge cloud infrastructures. Our design is tailored to a 5G mobile network context, building on its inherent programmability, management flexibility, and the availability of cloud resources at the mobile edge level, thus close to end users. We exploit Network Functions Virtualization (NFV) and Multi-access Edge Computing (MEC) technologies, proposing a system which is aligned with the recent NFV and MEC standards. To deliver a Quality-of-Experience (QoE) optimized video service, we derive empirical models of video QoE as a function of service workload, which, coupled with multi-level service monitoring, drive our slice resource allocation and elastic management mechanisms. These management schemes feature autonomic compute resource scaling, and on-the-fly transcoding to adapt video bit-rate to the current network conditions. Their effectiveness is demonstrated via testbed experiments.


翻译:我们提出了提供视频内容传送网络(CDN)功能的架构,作为多域云的一种服务。我们引入了CDN切片的概念,即根据内容提供者的要求创建的CDN服务实例,是自主管理,覆盖多种潜在多元的边缘云层基础设施。我们的设计是针对5G移动网络环境的,以其固有的可编程性、管理灵活性和移动边缘水平的云源资源可用性为基础,从而接近终端用户。我们利用网络功能虚拟化和多存取电子计算技术,提出一个与最近的NFV和MEC标准相一致的系统。为了提供高质量的探索性(QoE)优化视频服务,我们根据服务工作量的函数,根据多级服务监测,驱动我们的切片资源配置和弹性管理机制。这些管理计划的特点是自动配置资源缩放和多功能电子计算技术,建议一个与最近的NFVV和MEC标准相匹配的系统。我们通过测试网络的测试效果,我们从视频QoE中获取经验模型模型。

0
下载
关闭预览

相关内容

CDN的全称是Content Delivery Network,即内容分发网络。其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节,使内容传输的更快、更稳定。通过在网络各处放置节点服务器所构成的在现有的互联网基础之上的一层智能虚拟网络,CDN系统能够实时地根据网络流量和各节点的连接、负载状况以及到用户的距离和响应时间等综合信息将用户的请求重新导向离用户最近的服务节点上。其目的是使用户可就近取得所需内容,解决 Internet网络拥挤的状况,提高用户访问网站的响应速度。
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员