This paper describes experiments showing that some tasks in natural language processing (NLP) can already be performed using quantum computers, though so far only with small datasets. We demonstrate various approaches to topic classification. The first uses an explicit word-based approach, in which word-topic scoring weights are implemented as fractional rotations of individual qubit, and a new phrase is classified based on the accumulation of these weights in a scoring qubit using entangling controlled-NOT gates. This is compared with more scalable quantum encodings of word embedding vectors, which are used in the computation of kernel values in a quantum support vector machine: this approach achieved an average of 62% accuracy on classification tasks involving over 10000 words, which is the largest such quantum computing experiment to date. We describe a quantum probability approach to bigram modeling that can be applied to sequences of words and formal concepts, investigating a generative approximation to these distributions using a quantum circuit Born machine, and an approach to ambiguity resolution in verb-noun composition using single-qubit rotations for simple nouns and 2-qubit controlled-NOT gates for simple verbs. The smaller systems described have been run successfully on physical quantum computers, and the larger ones have been simulated. We show that statistically meaningful results can be obtained using real datasets, but this is much more difficult to predict than with easier artificial language examples used previously in developing quantum NLP systems. Other approaches to quantum NLP are compared, partly with respect to contemporary issues including informal language, fluency, and truthfulness.


翻译:本文描述一些实验, 表明自然语言处理( NLP) 中的某些任务已经可以使用量子计算机完成, 尽管到目前为止只有小数据集。 我们展示了各种主题分类方法。 首先使用明确的单词法, 将字数评分权重作为单个qubit的分数旋转来实施, 并且根据这些权重的累积, 使用量子路传动受控- NOT 门在评分中进行新的分类。 这与在量子支持矢量机器中计算内核值时使用的更可缩放的词嵌嵌入矢量编码方法相比较: 这种方法在涉及1000多个字数的分类任务上实现了平均62%的准确度, 这是迄今为止最大的量子计算实验。 我们描述了一种量子模型模型的量子概率方法, 利用量子路路路路路路路路路机调查这些分布的基因缩缩缩缩略图, 使用单方位的纯度方法, 但用单子转换方法比较容易, 而比2Qqual- 直径的直径, 能够用简单的计算机显示更多的直径径径直径直径, 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月7日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员