Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world, there is a varying number of objects and relations among them to model in the context. For example, in a music recommendation system, the user context contains what music they listen to, which artists create this music, the artist albums, etc. Adding richer relational context representations also introduces a much larger context space making exploration-exploitation harder. To improve the efficiency of exploration-exploitation knowledge about the context can be infused to guide the exploration-exploitation strategy. Relational context representations allow a natural way for humans to specify knowledge owing to their descriptive nature. We propose an adaptation of Knowledge Infused Policy Gradients to the Contextual Bandit setting and a novel Knowledge Infused Policy Gradients Upper Confidence Bound algorithm and perform an experimental analysis of a simulated music recommendation dataset and various real-life datasets where expert knowledge can drastically reduce the total regret and where it cannot.
翻译:但是,大多数算法使用平坦的特性矢量来代表背景,而在现实世界中,它们之间则有各种不同的对象和关系来在背景中建模。例如,在音乐建议系统中,用户背景包含他们所听的音乐,艺术家创作了这种音乐,艺术家相册等。 加上更丰富的关联背景表述还引入了更大的背景空间,使得探索-开发空间变得更加困难。为了提高关于环境的勘探-开发知识的效率,可以用来指导勘探-开发战略。在现实世界中,通缩背景表述允许人类以自然的方式说明知识,因为其描述性质。我们建议对知识应用的政策梯子进行调整,使之适应背景型强盗环境,并采用新的知识应用政策梯子高信任度超强算法,并对模拟音乐建议数据集和各种真实生活数据集进行实验性分析,专家知识可在其中大大减少全面悔恨和无法做到的地方进行这种实验性分析。