Recently, neural networks have been shown to perform exceptionally well in transforming two arbitrary sets into two linearly separable sets. Doing this with a randomly initialized neural network is of immense interest because the associated computation is cheaper than using fully trained networks. In this paper, we show that, with sufficient width, a randomly initialized one-layer neural network transforms two sets into two linearly separable sets with high probability. Furthermore, we provide explicit bounds on the required width of the neural network for this to occur. Our first bound is exponential in the input dimension and polynomial in all other parameters, while our second bound is independent of the input dimension, thereby overcoming the curse of dimensionality. We also perform an experimental study comparing the separation capacity of randomly initialized one-layer and two-layer neural networks. With correctly chosen biases, our study shows for low-dimensional data, the two-layer neural network outperforms the one-layer network. However, the opposite is observed for higher-dimensional data.
翻译:最近,神经网络在将两个任意的组合转换成两个线性分离的组合中表现得非常出色。 使用随机初始的神经网络非常有意义, 因为相关的计算比使用经过充分训练的网络更便宜。 在本文中, 我们显示, 一个随机初始的单层神经网络在宽度足够大的情况下将两个组合转换成两个线性分离的组合, 概率很高。 此外, 我们提供了神经网络所需的宽度的清晰界限 。 我们的第一个约束在输入维度和所有其他参数的多线性上是指数化的, 而我们的第二个约束则独立于输入维度, 从而克服了维度的诅咒。 我们还进行了一项实验性研究, 比较随机初始的单层和两层神经网络的分离能力。 有了正确选择的偏差, 我们的研究显示低维数据, 双层神经网络超越了单层网络的透度。 但是, 高维度数据的观测结果正好相反。