Recent work has shown impressive results on data-driven defocus deblurring using the two-image views available on modern dual-pixel (DP) sensors. One significant challenge in this line of research is access to DP data. Despite many cameras having DP sensors, only a limited number provide access to the low-level DP sensor images. In addition, capturing training data for defocus deblurring involves a time-consuming and tedious setup requiring the camera's aperture to be adjusted. Some cameras with DP sensors (e.g., smartphones) do not have adjustable apertures, further limiting the ability to produce the necessary training data. We address the data capture bottleneck by proposing a procedure to generate realistic DP data synthetically. Our synthesis approach mimics the optical image formation found on DP sensors and can be applied to virtual scenes rendered with standard computer software. Leveraging these realistic synthetic DP images, we introduce a recurrent convolutional network (RCN) architecture that improves deblurring results and is suitable for use with single-frame and multi-frame data (e.g., video) captured by DP sensors. Finally, we show that our synthetic DP data is useful for training DNN models targeting video deblurring applications where access to DP data remains challenging.
翻译:最近的工作显示,利用现代双像素(DP)传感器的双图像视图进行数据驱动脱焦分流工作取得了令人印象深刻的成果。这一研究领域的一项重大挑战是访问DP数据。尽管有许多带有DP传感器的照相机,但只有数量有限的摄像机能够访问低水平DP传感器图像。此外,为脱球采集培训数据涉及一个耗时和繁琐的设置,要求对相机的孔径进行调整。一些带有DP传感器(例如智能手机)的照相机没有可调整的孔径,进一步限制了生成必要培训数据的能力。我们通过提议一个程序以合成方式生成现实的DP数据来解决数据捕获瓶颈问题。我们的综合方法模拟了DP传感器上发现的光学图像形成,并可用于以标准计算机软件制作的虚拟场景。我们利用这些现实的合成DP图像,我们引入了一个经常性的革命网络(RCN)结构,改进了脱色结果,适合使用单一框架和多框架的数据(e.g,视频),我们用数据捕捉到了瓶颈的DPMRML数据模型。最后,我们展示了我们用于具有挑战性的DPMRMR的合成数据模型。