Attribution methods are among the most prevalent techniques in Explainable Artificial Intelligence (XAI) and are usually evaluated and compared using Fidelity metrics, with Insertion and Deletion being the most popular. These metrics rely on a baseline function to alter the pixels of the input image that the attribution map deems most important. In this work, we highlight a critical problem with these metrics: the choice of a given baseline will inevitably favour certain attribution methods over others. More concerningly, even a simple linear model with commonly used baselines contradicts itself by designating different optimal methods. A question then arises: which baseline should we use? We propose to study this problem through two desirable properties of a baseline: (i) that it removes information and (ii) that it does not produce overly out-of-distribution (OOD) images. We first show that none of the tested baselines satisfy both criteria, and there appears to be a trade-off among current baselines: either they remove information or they produce a sequence of OOD images. Finally, we introduce a novel baseline by leveraging recent work in feature visualisation to artificially produce a model-dependent baseline that removes information without being overly OOD, thus improving on the trade-off when compared to other existing baselines. Our code is available at https://github.com/deel-ai-papers/Back-to-the-Baseline
翻译:归因方法是可解释人工智能(XAI)中最常用的技术之一,通常通过保真度指标进行评估和比较,其中插入和删除是最流行的指标。这些指标依赖于基线函数来修改输入图像中被归因图判定为最重要的像素。在本研究中,我们揭示了这些指标存在的一个关键问题:特定基线的选择不可避免地会使某些归因方法优于其他方法。更令人担忧的是,即使是一个简单的线性模型,在使用常用基线时也会因设计而自相矛盾,指定不同的最优方法。由此产生一个问题:我们应该使用哪种基线?我们建议通过基线的两个理想特性来研究这一问题:(i)能够移除信息,以及(ii)不会产生过度分布外(OOD)的图像。我们首先证明,所有测试的基线均无法同时满足这两个标准,且现有基线似乎存在权衡:要么移除信息,要么产生一系列OOD图像。最后,我们通过利用特征可视化领域的最新研究,提出一种新颖的基线方法,人工生成一种模型依赖的基线,该基线能在移除信息的同时不过度偏离分布,从而在权衡中优于其他现有基线。我们的代码可在 https://github.com/deel-ai-papers/Back-to-the-Baseline 获取。