Bayesian predictive synthesis provides a coherent Bayesian framework for combining multiple predictive distributions, or agents, into a single updated prediction, extending Bayesian model averaging to allow general pooling of full predictive densities. This paper develops a static, graphon level version of Bayesian predictive synthesis for random networks. At the graphon level we show that Bayesian predictive synthesis corresponds to the integrated squared error projection of the true graphon onto the linear span of the agent graphons. We derive nonasymptotic oracle inequalities and prove that least-squares graphon-BPS, based on a finite number of edge observations, achieves the minimax L^2 rate over this agent span. Moreover, we show that any estimator that selects a single agent graphon is uniformly inconsistent on a nontrivial subset of the convex hull of the agents, whereas graphon-level Bayesian predictive synthesis remains minimax-rate optimal-formalizing a combination beats components phenomenon. Structural properties of the underlying random graphs are controlled through explicit Lipschitz bounds that transfer graphon error into error for edge density, degree distributions, subgraph densities, clustering coefficients, and giant component phase transitions. Finally, we develop a heavy tail theory for Bayesian predictive synthesis, showing how mixtures and entropic tilts preserve regularly varying degree distributions and how exponential random graph model agents remain within their family under log linear tilting with Kullback-Leibler optimal moment calibration.
翻译:贝叶斯预测合成为融合多个预测分布(或智能体)提供了一种连贯的贝叶斯框架,将其整合为单一更新预测,将贝叶斯模型平均推广至允许对完整预测密度进行广义池化。本文针对随机网络发展了一种静态的图级贝叶斯预测合成方法。在图级层面,我们证明贝叶斯预测合成对应于真实图在智能体图线性张成空间上的积分平方误差投影。我们推导了非渐近的Oracle不等式,并证明基于有限边观测的最小二乘图-BPS在该智能体张成空间上达到了极小极大L^2速率。此外,我们证明任何选择单一智能体图的估计器在智能体凸包的某个非平凡子集上均存在一致不一致性,而图级贝叶斯预测合成仍保持极小极大速率最优性——这形式化地论证了“组合优于组件”现象。通过显式Lipschitz界控制底层随机图的结构特性,可将图误差转化为边密度、度分布、子图密度、聚类系数及巨分量相变等指标的误差。最后,我们发展了贝叶斯预测合成的重尾理论,阐明了混合分布与熵倾斜如何保持正则变化的度分布,以及指数随机图模型智能体在具有Kullback-Leibler最优矩校准的对数线性倾斜下如何保持其分布族特性。