In tunnel construction projects, delays induce high costs. Thus, tunnel boring machines (TBM) operators aim for fast advance rates, without safety compromise, a difficult mission in uncertain ground environments. Finding the optimal control parameters based on the TBM sensors' measurements remains an open research question with large practical relevance. In this paper, we propose an intelligent decision support system developed in three steps. First past projects performances are evaluated with an optimality score, taking into account the advance rate and the working pressure safety. Then, a deep learning model learns the mapping between the TBM measurements and this optimality score. Last, in real application, the model provides incremental recommendations to improve the optimality, taking into account the current setting and measurements of the TBM. The proposed approach is evaluated on real micro-tunnelling project and demonstrates great promises for future projects.
翻译:在隧道建设项目中,延误导致高成本。因此,隧道无趣机器操作员的目标是在不进行安全妥协的情况下快速提前收费,这是在不确定的地面环境中执行的一个困难任务。根据TBM传感器的测量结果找到最佳控制参数仍然是一个开放的研究问题,具有很大的实际意义。我们在本文件中提议了一个智能决策支持系统,分三个步骤发展;对过去最初的项目业绩进行了最佳评价,考虑到先进率和工作压力安全;然后,一个深层学习模型了解TBM测量结果和最佳度分之间的绘图。最后,在实际应用中,该模型提供了改进最佳性的渐进建议,同时考虑到TBM的当前设置和测量结果。对真正的微型漏网项目进行了评价,并对未来项目作出了重大承诺。