Automated planning is a prominent area of Artificial Intelligence, and an important component for intelligent autonomous agents. A cornerstone of domain-independent planning is the separation between planning logic, i.e. the automated reasoning side, and the knowledge model, that encodes a formal representation of domain knowledge needed to reason upon a given problem to synthesise a solution plan. Such a separation enables the use of reformulation techniques, which transform how a model is represented in order to improve the efficiency of plan generation. Over the past decades, significant research effort has been devoted to the design of reformulation techniques. In this paper, we present a systematic review of the large body of work on reformulation techniques for classical planning, aiming to provide a holistic view of the field and to foster future research in the area. As a tangible outcome, we provide a qualitative comparison of the existing classes of techniques, that can help researchers gain an overview of their strengths and weaknesses.
翻译:自动规划是人工智能的一个突出领域,是智能自主剂的一个重要组成部分。领域独立规划的基石是将规划逻辑(即自动化推理方面)和知识模型(即知识模型)区分开来,将正式的域知识描述成一个需要根据某一问题来解释一个综合解决方案计划所需的正式域知识。这种区分使得能够使用重新拟订技术,这种技术改变了模型的代号,以提高计划生成的效率。在过去几十年里,对重订技术的设计进行了大量研究努力。在本文件中,我们系统地审查了关于古典规划重订技术的大量工作,目的是提供对该领域的整体观点并促进该领域的未来研究。作为一个实际成果,我们对现有的技术类别进行了质的比较,有助于研究人员全面了解其长处和短处。