Ordered set (and map) is one of the most used data type. In addition to standard set operations, like insert, delete and contains, it can provide set-set operations such as union, intersection, and difference. Each of these set-set operations is equivalent to batched operations: the data structure should process a set of operations insert, delete, and contains. It is obvious that we want these "large" operations to be parallelized. Typically, these sets are implemented with the trees of logarithmic height, such as 2-3 tree, Treap, AVL tree, Red-Black tree, etc. Until now, little attention was devoted to data structures that work better but under several restrictions on the data. In this work, we parallelize Interpolation Search Tree which serves each request from a smooth distribution in doubly-logarithmic time. Our data structure of size $n$ performs a batch of $m$ operations in $O(m \log\log n)$ work and poly-log span.
翻译:有顺序的成套操作(和地图)是最常用的数据类型之一。 除了插入、删除和包含等标准设置操作外, 它还可以提供组合、 交叉和差异等设定操作。 每个集设置操作都相当于分批操作 : 数据结构应该处理一组插入、 删除和包含操作 。 显然, 我们希望这些“ 大型” 操作同时进行 。 这些数据集通常与对数高度的树( 如2-3 棵树、 Treap、 AVL 树、 红- 黑树等 ) 执行 。 到目前为止, 很少注意那些工作较好但受数据若干限制的数据结构 。 在这项工作中, 我们平行了用于在双对数时间平稳分布的每项请求的插图 。 我们规模为 $ 的数据结构在$O( m log\log n) 工作和 聚log- 范围上进行批量的操作 $m美元 。