In this paper, we combine the strengths of distance-based and classification-based approaches for the task of identifying extended reality users by their movements. For this we present an embedding-based approach that leverages deep metric learning. We train the model on a dataset of users playing the VR game ``Half-Life: Alyx'' and conduct multiple experiments and analyses using a state of the art classification-based model as baseline. The results show that the embedding-based method 1) is able to identify new users from non-specific movements using only a few minutes of enrollment data, 2) can enroll new users within seconds, while retraining the baseline approach takes almost a day, 3) is more reliable than the baseline approach when only little enrollment data is available, 4) can be used to identify new users from another dataset recorded with different VR devices. Altogether, our solution is a foundation for easily extensible XR user identification systems, applicable to a wide range of user motions. It also paves the way for production-ready models that could be used by XR practitioners without the requirements of expertise, hardware, or data for training deep learning models.
翻译:在本文中,我们将距离和分类两种方法的优点相结合,用于通过用户运动识别扩展现实(XR)用户。为此,我们提出了一种基于嵌入的方法,利用深度度量学习。我们在一个由用户玩VR游戏“Half-Life: Alyx”组成的数据集上训练模型,并使用最先进的基于分类的模型作为基线进行多个实验和分析。结果表明,基于嵌入的方法可以:1)在仅使用几分钟的注册数据时通过非特定运动识别新用户,2)在几秒钟内注册新用户,而重新训练基线方法则需要几乎一天的时间,3)当只有少量注册数据可用时,比基线方法更可靠,4)可以用于通过不同的VR设备记录的另一个数据集识别新用户。总之,我们的解决方案是易于扩展的XR用户识别系统的基础,适用于各种用户运动。它也为可由XR从业人员使用的生产级模型铺平了道路,而无需专业知识、硬件或训练深度学习模型所需的数据。